On Graphs Representable by Pattern-Avoiding Words
In this paper we study graphs defined by pattern-avoiding words. Word-representable graphs have been studied extensively following their introduction in 2004 and are the subject of a book published by Kitaev and Lozin in 2015. Recently there has been interest in studying graphs represented by patter...
Gespeichert in:
Veröffentlicht in: | Discussiones Mathematicae. Graph Theory 2019-05, Vol.39 (2), p.375-389 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study graphs defined by pattern-avoiding words. Word-representable graphs have been studied extensively following their introduction in 2004 and are the subject of a book published by Kitaev and Lozin in 2015. Recently there has been interest in studying graphs represented by pattern-avoiding words. In particular, in 2016, Gao, Kitaev, and Zhang investigated 132-representable graphs, that is, word-representable graphs that can be represented by a word which avoids the pattern 132. They proved that all 132-representable graphs are circle graphs and provided examples and properties of 132-representable graphs. They posed several questions, some of which we answer in this paper.
One of our main results is that not all circle graphs are 132-representable, thus proving that 132-representable graphs are a proper subset of circle graphs, a question that was left open in the paper by Gao
We show that 123-representable graphs are also a proper subset of circle graphs, and are different from 132-representable graphs. We also study graphs represented by pattern-avoiding 2-uniform words, that is, words in which every letter appears exactly twice. |
---|---|
ISSN: | 2083-5892 |
DOI: | 10.7151/dmgt.2128 |