Low Solar Absorptance, High Emittance Performance Thermochromic VO2-Based Smart Radiator Device
Thermochromic vanadium dioxide (VO2)-based smart radiator devices (SRDs) display emittance variation with changes in temperature, making them very promising for energy-efficient thermal control of spacecrafts in general, and nanosatellites in particular. However, the high solar absorptance of the VO...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-12, Vol.12 (24), p.4422 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermochromic vanadium dioxide (VO2)-based smart radiator devices (SRDs) display emittance variation with changes in temperature, making them very promising for energy-efficient thermal control of spacecrafts in general, and nanosatellites in particular. However, the high solar absorptance of the VO2-based SRDs remains too high for their intended application. Based on an approach combining optical simulation and experimental work, I demonstrate that an additional top stack layer alternating between high and low refractive indices made of a-Si(25 nm)/SiO2(67 nm) reduces the solar absorptance of a VO2-based SRD by 35% (from 0.43 to 0.28) while keeping the emittance performance of the SRD within the requirements for the intended application (low-temperature emittance εL = 0.35, high-temperature emittance εH = 0.81 and emittance tuneability with temperature Δε = 0.46). I also discuss factors to consider while designing additional top stack layers alternating between high and low refractive indices to further decrease the SRD’s solar absorptance without affecting its emittance performance. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12244422 |