NEUTRON NOISE PATTERNS FROM COUPLED FUEL-ASSEMBLY VIBRATIONS

The neutron flux fluctuation magnitude of KWU-built PWRs shows a hitherto unexplained correlation with the types of loaded fuel assemblies. Also, certain measured long-range neutron flux fluctuation patterns in neighboring core quadrants still lack a closed understanding of their origin. The explana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2021-01, Vol.247, p.2015
Hauptverfasser: Viebach, M., Lange, C., Seidl, M., Bilodid, Y., Hurtado, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The neutron flux fluctuation magnitude of KWU-built PWRs shows a hitherto unexplained correlation with the types of loaded fuel assemblies. Also, certain measured long-range neutron flux fluctuation patterns in neighboring core quadrants still lack a closed understanding of their origin. The explanation of these phenomena has recently revived a new interest in neutron noise research. The contribution at hand investigates the idea that a synchronized coolant-driven vibration of major parts of the fuel-assembly ensemble leads to these phenomena. Starting with an assumed mode of such collective vibration, the resulting effects on the time-dependent neutron-flux distribution are analyzed via a DYN3D simulation. A three-dimensional representation of the time-dependent bow of all fuel assemblies is taken into account as a nodal DYN3D feedback parameter by time-dependent variations of the fuel-assembly pitch. The impact of its variation on the cross sections is quantified using a cross-section library that is generated from the output of corresponding CASMO5 calculations. The DYN3D simulation qualitatively reproduces the measured neutron-flux fluctuation patterns. The magnitude of the fluctuations and its radial dependence are comparable to the measured details. The results imply that collective fuel-assembly vibrations are a promising candidate for being the key to understand long-known fluctuation patterns in KWU built PWRs. Further research should elaborate on possible excitation mechanisms of the assumed vibration modes.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202124702015