Two-measure approach to breaking scale-invariance in a standard-model extension

We introduce Weyl's scale-invariance as an additional global symmetry in the standard model of electroweak interactions. A natural consequence is the introduction of general relativity coupled to scalar fields à la Dirac, that includes the Higgs doublet and a singlet σ-field required for implem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2017-02, Vol.765 (C), p.251-255
Hauptverfasser: Guendelman, Eduardo I., Nishino, Hitoshi, Rajpoot, Subhash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce Weyl's scale-invariance as an additional global symmetry in the standard model of electroweak interactions. A natural consequence is the introduction of general relativity coupled to scalar fields à la Dirac, that includes the Higgs doublet and a singlet σ-field required for implementing global scale-invariance. We introduce a mechanism for ‘spontaneous breaking’ of scale-invariance by introducing a coupling of the σ-field to a new metric-independent measure Φ defined in terms of four scalars ϕi(i = 1, 2, 3, 4). Global scale-invariance is regained by combining it with internal diffeomorphism of these four scalars. We show that once the global scale-invariance is broken, the phenomenon (a) generates Newton's gravitational constant GN and (b) triggers spontaneous symmetry breaking in the normal manner resulting in masses for the conventional fermions and bosons. In the absence of fine-tuning the scale at which the scale-symmetry breaks can be of order Planck mass. If right-handed neutrinos are also introduced, their absence at present energy scales is attributed to their mass terms tied to the scale where scale-invariance breaks.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2016.11.036