Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules

Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-03, Vol.12 (1), p.1578-1578, Article 1578
Hauptverfasser: Villalva, Julia, Develioglu, Aysegul, Montenegro-Pohlhammer, Nicolas, Sánchez-de-Armas, Rocío, Gamonal, Arturo, Rial, Eduardo, García-Hernández, Mar, Ruiz-Gonzalez, Luisa, Costa, José Sánchez, Calzado, Carmen J., Pérez, Emilio M., Burzurí, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale. Spin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21791-3