How to apply the optimal estimation method to your lidar measurements for improved retrievals of temperature and composition

The optimal estimation method (OEM) has a long history of use in passive remote sensing, but has only recently been applied to active instruments like lidar. The OEM’s advantage over traditional techniques includes obtaining a full systematic and random uncertainty budget plus the ability to work wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sica, R. J., Haefele, A., Jalali, A., Gamage, S., Farhani, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimal estimation method (OEM) has a long history of use in passive remote sensing, but has only recently been applied to active instruments like lidar. The OEM’s advantage over traditional techniques includes obtaining a full systematic and random uncertainty budget plus the ability to work with the raw measurements without first applying instrument corrections. In our meeting presentation we will show you how to use the OEM for temperature and composition retrievals for Rayleigh-scatter, Ramanscatter and DIAL lidars.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201817601025