Integrated Autopilot Guidance Based on Zero-Effort-Miss Formulation for Tail-Controlled Missiles

This paper presents a control structure integrating guidance and control loops for tail-controlled missile systems. Motivated by the fact that common tail-controlled missiles involve non-minimum phase dynamics, the proposed controller is designed to prevent the internal dynamics from diverging, as w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-07, Vol.12 (14), p.7120
Hauptverfasser: Kim, Hyeong-Geun, Shin, Jongho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a control structure integrating guidance and control loops for tail-controlled missile systems. Motivated by the fact that common tail-controlled missiles involve non-minimum phase dynamics, the proposed controller is designed to prevent the internal dynamics from diverging, as well as achieving homing against the intended target. To minimize the miss distance at the end of homing, we derive a formulation of a zero-effort-miss using engagement kinematics that contain the rotating dynamics of the missile, which is different from existing approaches. Subsequently, to nullify the zero-effort-miss, a nonlinear controller is designed based on the Lyapunov stability theory. Since the derived controller has a similar structure to the conventional three-loop topology that has been utilized for various tail-controlled flight systems, it is expected that the proposed method can be applied to the actual system from a practical point of view. Numerical simulation results also show that the proposed method achieves target interception while possessing stable internal dynamics.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12147120