Variation in mineral element composition of landrace taro (Colocasia esculenta) corms grown under dryland farming system in South Africa

Taro [Colocasia esculenta (L.) Schott] has the potential to address food and nutrition insecurity in sub-Saharan Africa. However, the nutrient content of taro is yet to be fully elucidated. The objective of this study was to evaluate mineral element content as a proxy for nutritional value of differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2021-04, Vol.7 (4), p.e06727-e06727, Article e06727
Hauptverfasser: Gerrano, Abe Shegro, Mathew, Isack, Shayanowako, Admire IT, Amoo, Stephen, Mellem, John Jason, Van Rensburg, Willem Jansen, Bairu, Michael Wolday, Venter, Sonja Louise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Taro [Colocasia esculenta (L.) Schott] has the potential to address food and nutrition insecurity in sub-Saharan Africa. However, the nutrient content of taro is yet to be fully elucidated. The objective of this study was to evaluate mineral element content as a proxy for nutritional value of different taro genotypes. The study evaluated 14 taro accessions at Roodeplaat and Umbumbulu in South Africa based on their calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorous (P) and zinc (Zn) content. The accessions were planted in a randomized complete block design, replicated three times under field conditions. The mineral element content varied significantly (p < 0.05) among the genotypes. Genotypes Amad7-2, Umbu8 and Amad101 exhibited high Ca (≥432 mg kg−1), Fe (≥32 mg kg−1) and Mg (≥229 mg kg−1) across the locations. The first principal component (PC) accounted for 33.7% of the variation and was strongly associated with Zn (r = 0.94, p < 0.001) and P (r = 0.89, p < 0.001). The second PC explained 29.7% of the variation and was associated with Na (r = 0.83, p < 0.001), Mg (r = 0.76, p < 0.001) and K (r = 0.55, p < 0.05). Fe and Mn contributed below the 12.5% threshold to the PCs and were considered as less discriminatory among the accessions. The negative correlations among some of the mineral elements would be a challenge for selection and breeding of nutritious taro accessions. This information is essential to select superior local accessions based on their mineral element content for developing breeding populations and lines for improving nutrition quality among poor households in sub-Saharan Africa. Food security, Minerals, Nutrition, Multi-environment, Multivariate analysis, Selection, Variation.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2021.e06727