An Efficient Feature Extraction Network for Unsupervised Hyperspectral Change Detection
Change detection (CD) in hyperspectral images has become a research hotspot in the field of remote sensing due to the extremely wide spectral range of hyperspectral images compared to traditional remote sensing images. It is challenging to effectively extract features from redundant high-dimensional...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-09, Vol.14 (18), p.4646 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Change detection (CD) in hyperspectral images has become a research hotspot in the field of remote sensing due to the extremely wide spectral range of hyperspectral images compared to traditional remote sensing images. It is challenging to effectively extract features from redundant high-dimensional data for hyperspectral change detection tasks due to the fact that hyperspectral data contain abundant spectral information. In this paper, a novel feature extraction network is proposed, which uses a Recurrent Neural Network (RNN) to mine the spectral information of the input image and combines this with a Convolutional Neural Network (CNN) to fuse the spatial information of hyperspectral data. Finally, the feature extraction structure of hybrid RNN and CNN is used as a building block to complete the change detection task. In addition, we use an unsupervised sample generation strategy to produce high-quality samples for network training. The experimental results demonstrate that the proposed method yields reliable detection results. Moreover, the proposed method has fewer noise regions than the pixel-based method. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14184646 |