Tubulin in Platelets: When the Shape Matters

Platelets are anuclear cells with a short lifespan that play an essential role in many pathophysiological processes, including haemostasis, inflammation, infection, vascular integrity, and metastasis. Billions of platelets are produced daily from megakaryocytes (platelet precursors). Despite this hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-07, Vol.20 (14), p.3484
Hauptverfasser: Cuenca-Zamora, Ernesto José, Ferrer-Marín, Francisca, Rivera, José, Teruel-Montoya, Raúl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platelets are anuclear cells with a short lifespan that play an essential role in many pathophysiological processes, including haemostasis, inflammation, infection, vascular integrity, and metastasis. Billions of platelets are produced daily from megakaryocytes (platelet precursors). Despite this high production, the number of circulating platelets is stable and, under resting conditions, they maintain their typical discoid shape thanks to cytoskeleton proteins. The activation of platelets is associated with dynamic and rapid changes in the cytoskeleton. Two cytoskeletal polymer systems exist in megakaryocytes and platelets: actin filaments and microtubules, based on actin, and α- and β-tubulin heterodimers, respectively. Herein, we will focus on platelet-specific tubulins and their alterations and role of the microtubules skeleton in platelet formation (thrombopoiesis). During this process, microtubules mediate elongation of the megakaryocyte extensions (proplatelet) and granule trafficking from megakaryocytes to nascent platelets. In platelets, microtubules form a subcortical ring, the so-called marginal band, which confers the typical platelet discoid shape and is also responsible for changes in platelet morphology upon activation. Molecular alterations in the gene encoding β1 tubulin and microtubules post-translational modifications may result in quantitative or qualitative changes in tubulin, leading to altered cytoskeleton reorganization that may induce changes in the platelet number (thrombocytopenia), morphology or function. Consequently, β1-tubulin modifications may participate in pathological and physiological processes, such as development.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20143484