PSAU-Defender: A Lightweight and Low-Cost Comprehensive Framework for BeiDou Spoofing Mitigation in Vehicular Networks

The increasing reliance of Vehicular Ad-hoc Networks (VANETs) on the BeiDou Navigation Satellite System (BDS) for precise positioning and timing information has raised significant concerns regarding their vulnerability to spoofing attacks. This research proposes a novel approach to mitigate BeiDou s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World Electric Vehicle Journal 2024-09, Vol.15 (9), p.407
1. Verfasser: Tariq, Usman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing reliance of Vehicular Ad-hoc Networks (VANETs) on the BeiDou Navigation Satellite System (BDS) for precise positioning and timing information has raised significant concerns regarding their vulnerability to spoofing attacks. This research proposes a novel approach to mitigate BeiDou spoofing attacks in VANETs by leveraging a hybrid machine learning model that combines XGBoost and Random Forest with a Kalman Filter for real-time anomaly detection in BeiDou signals. It also introduces a geospatial message authentication mechanism to enhance vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication security. The research investigates low-cost and accessible countermeasures against spoofing attacks using COTS receivers and open-source SDRs. Spoofing attack scenarios are implemented in both software and hardware domains using an open-source BeiDou signal simulator to examine the effects of different spoofing attacks on victim receivers and identify detection methods for each type, focusing on pre-correlation techniques with power-related metrics and signal quality monitoring using correlator values. The emulation results demonstrate the effectiveness of the proposed approach in detecting and mitigating BeiDou spoofing attacks in VANETs, ensuring the integrity and reliability of safety-critical information. This research contributes to the development of robust security mechanisms for VANETs and has practical implications for enhancing the resilience of transportation systems against spoofing threats. Future research will focus on extending the proposed approach to other GNSS constellations and exploring the integration of additional security measures to further strengthen VANET security.
ISSN:2032-6653
2032-6653
DOI:10.3390/wevj15090407