Electron-Hole Interference in an Inverted-Band Semiconductor Bilayer

Electron optics in the solid state promises new functionality in electronics through the possibility of realizing nano- and micrometer-sized interferometers, lenses, collimators, and beam splitters that manipulate electrons instead of light. Until now, however, such functionality has been demonstrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2020-07, Vol.10 (3), p.031007, Article 031007
Hauptverfasser: Karalic, Matija, Štrkalj, Antonio, Masseroni, Michele, Chen, Wei, Mittag, Christopher, Tschirky, Thomas, Wegscheider, Werner, Ihn, Thomas, Ensslin, Klaus, Zilberberg, Oded
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron optics in the solid state promises new functionality in electronics through the possibility of realizing nano- and micrometer-sized interferometers, lenses, collimators, and beam splitters that manipulate electrons instead of light. Until now, however, such functionality has been demonstrated exclusively in one-dimensional devices, such as in nanotubes, and in graphene-based devices operating withp−njunctions. In this work, we describe a novel mechanism for realizing electron optics in two dimensions. By studying a two-dimensional Fabry-Perot interferometer based on a resonant cavity formed in an InAs/GaSb double quantum well usingp−njunctions, we establish that electron-hole hybridization in band-inverted systems can facilitate coherent interference. With this discovery, we expand the field of electron optics in two dimensions to encompass materials that exhibit band inversion and hybridization.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.10.031007