Design and Experimental Study of a Novel Semi-Physical Unmanned-Aerial-Vehicle Simulation Platform for Optical-Flow-Based Navigation

In the process of unmanned aerial vehicle (UAV) visual-navigation-algorithm design and accuracy verification, the question of how to develop a high-precision and high-reliability semi-physical simulation platform has become a significant engineering problem. In this study, a new UAV semi-physical-si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2023-02, Vol.10 (2), p.183
Hauptverfasser: Lin, Zhonglin, Wang, Weixiong, Li, Yufeng, Zhang, Xinglong, Zhang, Tianhong, Wang, Haitao, Wu, Xianyu, Huang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the process of unmanned aerial vehicle (UAV) visual-navigation-algorithm design and accuracy verification, the question of how to develop a high-precision and high-reliability semi-physical simulation platform has become a significant engineering problem. In this study, a new UAV semi-physical-simulation-platform architecture is proposed, which includes a six-degree-of-freedom mechanical structure, a real-time control system and real-time animation-simulation software. The mechanical structure can realistically simulate the flight attitude of a UAV in a three-dimensional space of 4 × 2 × 1.4 m. Based on the designed mechanical structure and its dynamics, the control system and the UAV real-time flight-animation simulation were designed. Compared with the conventional simulation system, this system enables real-time flight-attitude simulation in a real physical environment and simultaneous flight-attitude simulation in virtual-animation space. The test results show that the repeated positioning accuracy of the three-axis rotary table reaches 0.006°, the repeated positioning accuracy of the three-axis translation table reaches 0.033 mm, and the dynamic-positioning accuracy reaches 0.04° and 0.4 mm, which meets the simulation requirements of high-precision visual UAV navigation.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace10020183