From Snyder space-times to doubly κ-dependent Yang quantum phase spaces and their generalizations
We propose the doubly κ-dependent Yang quantum phase space which describes the generalization of D=4 Yang model. We postulate that such model is covariant under the generalized Born map, what permits to derive this new model from the earlier proposed κ-Snyder model. Our model of D=4 relativistic Yan...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2024-07, Vol.854, p.138729, Article 138729 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose the doubly κ-dependent Yang quantum phase space which describes the generalization of D=4 Yang model. We postulate that such model is covariant under the generalized Born map, what permits to derive this new model from the earlier proposed κ-Snyder model. Our model of D=4 relativistic Yang quantum phase space depends on five deformation parameters which form two Born map-related dimensionful pairs: (M,R) specifying the standard Yang model and (κ,κ˜) characterizing the Born-dual κ-dependence of quantum space-time and quantum fourmomenta sectors; fifth parameter ρ is dimensionless and Born-selfdual. In the last section, we propose the Kaluza-Klein generalization of D=4 Yang model and the new quantum Yang models described algebraically by quantum-deformed oˆ(1,5) algebras. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2024.138729 |