Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in Escherichia coli

Most late embryogenesis abundant group 3 (G3LEA) proteins are highly hydrophilic and disordered, which can be transformed into ordered α-helices to play an important role in responding to diverse stresses in numerous organisms. Unlike most G3LEA proteins, DosH derived from is a naturally ordered G3L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-04, Vol.22 (9), p.4482
Hauptverfasser: Guo, Leizhou, Zhao, Mingming, Tang, Yin, Han, Jiahui, Gui, Yuan, Ge, Jiaming, Jiang, Shijie, Dai, Qilin, Zhang, Wei, Lin, Min, Zhou, Zhengfu, Wang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most late embryogenesis abundant group 3 (G3LEA) proteins are highly hydrophilic and disordered, which can be transformed into ordered α-helices to play an important role in responding to diverse stresses in numerous organisms. Unlike most G3LEA proteins, DosH derived from is a naturally ordered G3LEA protein, and previous studies have found that the N-terminal domain (position 1-103) of DosH protein is the key region for its folding into an ordered secondary structure. Synthetic biology provides the possibility for artificial assembling ordered G3LEA proteins or their analogues. In this report, we used the N-terminal domain of DosH protein as module A (named DS) and the hydrophilic domains (DrHD, BnHD, CeHD, and YlHD) of G3LEA protein from different sources as module B, and artificially assembled four non-natural hydrophilic proteins, named DS + DrHD, DS + BnHD, DS + CeHD, and DS + YlHD, respectively. Circular dichroism showed that the four hydrophile proteins were highly ordered proteins, in which the α-helix contents were DS + DrHD (56.1%), DS + BnHD (53.7%), DS + CeHD (49.1%), and DS + YLHD (64.6%), respectively. Phenotypic analysis showed that the survival rate of recombinant containing ordered hydrophilic protein was more than 10% after 4 h treatment with 1.5 M NaCl, which was much higher than that of the control group. Meanwhile, in vivo enzyme activity results showed that they had higher activities of superoxide dismutase, catalase, lactate dehydrogenase and less malondialdehyde production. Based on these results, the N-terminal domain of DosH protein can be applied in synthetic biology due to the fact that it can change the order of hydrophilic domains, thus increasing stress resistance.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22094482