Long-term trend prediction of pandemic combining the compartmental and deep learning models

Predicting the spread trends of a pandemic is crucial, but long-term prediction remains challenging due to complex relationships among disease spread stages and preventive policies. To address this issue, we propose a novel approach that utilizes data augmentation techniques, compartmental model fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-09, Vol.14 (1), p.21068-11, Article 21068
Hauptverfasser: Chen, Wanghu, Luo, Heng, Li, Jing, Chi, Jiacheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting the spread trends of a pandemic is crucial, but long-term prediction remains challenging due to complex relationships among disease spread stages and preventive policies. To address this issue, we propose a novel approach that utilizes data augmentation techniques, compartmental model features, and disease preventive policies. We also use a breakpoint detection method to divide the disease spread into distinct stages and weight these stages using a self-attention mechanism to account for variations in virus transmission capabilities. Finally, we introduce a long-term spread trend prediction model for infectious diseases based on a bi-directional gated recurrent unit network. To evaluate the effectiveness of our model, we conducted experiments using public datasets, focusing on the prediction of COVID-19 cases in four countries over a period of 210 days. Experiments shown that the Adjust-R2 index of our model exceeds 0.9914, outperforming existing models. Furthermore, our model reduces the mean absolute error by 0.85–4.52% compared to other models. Our combined approach of using both the compartmental and deep learning models provides valuable insights into the dynamics of disease spread.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-72005-x