Fixed-Point Results for Generalized α-Admissible Hardy-Rogers’ Contractions in Cone b2-Metric Spaces over Banach’s Algebras with Application

In the current manuscript, the notion of a cone b2-metric space over Banach’s algebra with parameter b≻¯e is introduced. Furthermore, using α-admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conclusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematical physics 2020-01, Vol.2020 (2020), p.1-12
Hauptverfasser: Islam, Ziaul, de la Sen, Manuel, Sarwar, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the current manuscript, the notion of a cone b2-metric space over Banach’s algebra with parameter b≻¯e is introduced. Furthermore, using α-admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conclusions in existing literature. In order to verify our key result, a nontrivial example is given, and as an application, we proved a theorem that shows the existence of a solution of an infinite system of integral equations.
ISSN:1687-9120
1687-9139
DOI:10.1155/2020/8826060