Fixed-Point Results for Generalized α-Admissible Hardy-Rogers’ Contractions in Cone b2-Metric Spaces over Banach’s Algebras with Application
In the current manuscript, the notion of a cone b2-metric space over Banach’s algebra with parameter b≻¯e is introduced. Furthermore, using α-admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conclusion...
Gespeichert in:
Veröffentlicht in: | Advances in mathematical physics 2020-01, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the current manuscript, the notion of a cone b2-metric space over Banach’s algebra with parameter b≻¯e is introduced. Furthermore, using α-admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conclusions in existing literature. In order to verify our key result, a nontrivial example is given, and as an application, we proved a theorem that shows the existence of a solution of an infinite system of integral equations. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2020/8826060 |