Strong homotopy algebras for chiral higher spin gravity via Stokes theorem

A bstract Chiral higher spin gravity is defined in terms of a strong homotopy algebra of pre-Calabi-Yau type (noncommutative Poisson structure). All structure maps are given by the integrals over the configuration space of concave polygons and the first two maps are related to the (Shoikhet-Tsygan-)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2024-06, Vol.2024 (6), p.186-86, Article 186
Hauptverfasser: Sharapov, Alexey, Skvortsov, Evgeny, Van Dongen, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Chiral higher spin gravity is defined in terms of a strong homotopy algebra of pre-Calabi-Yau type (noncommutative Poisson structure). All structure maps are given by the integrals over the configuration space of concave polygons and the first two maps are related to the (Shoikhet-Tsygan-)Kontsevich Formality. As with the known formality theorems, we prove the A ∞ -relations via Stokes’ theorem by constructing a closed form and a configuration space whose boundary components lead to the A ∞ -relations. This gives a new way to formulate higher spin gravities and hints at a construct encompassing the known formality theorems.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP06(2024)186