On Some Linear Operators Preserving Disjoint Support Property

The aim of this work is to characterize all bounded linear operators $T:\lpi\rightarrow\lpi$ which preserve disjoint support property. We show that the constant coefficients of all isometries on $\lpi$ are in the class of such operators, where $2\neq p\in [1,\infty )$ and $I$ is a non-empty set. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sahand communications in mathematical analysis 2021-08, Vol.18 (3), p.41-49
Hauptverfasser: Noha Eftekhari, Ali Bayati Eshkaftaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work is to characterize all bounded linear operators $T:\lpi\rightarrow\lpi$ which preserve disjoint support property. We show that the constant coefficients of all isometries on $\lpi$ are in the class of such operators, where $2\neq p\in [1,\infty )$ and $I$ is a non-empty set. We extend preserving disjoint support property to linear operators on $\mathfrak{c}_{0}(I).$ At the end, we obtain some equivalent properties of isometries on Banach spaces.
ISSN:2322-5807
2423-3900
DOI:10.22130/scma.2021.115697.690