SimCDL: A Simple Framework for Contrastive Dictionary Learning

In this paper, we propose a novel approach to the dictionary learning (DL) initialization problem, leveraging the SimCLR framework from deep learning in a self-supervised manner. Dictionary learning seeks to represent signals as sparse combinations of dictionary atoms, but effective initialization r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-11, Vol.14 (22), p.10082
Hauptverfasser: Ilie-Ablachim, Denis C., Dumitrescu, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel approach to the dictionary learning (DL) initialization problem, leveraging the SimCLR framework from deep learning in a self-supervised manner. Dictionary learning seeks to represent signals as sparse combinations of dictionary atoms, but effective initialization remains challenging. By applying contrastive learning, we encourage similar representations for augmented versions of the same sample while distinguishing between different samples. This results in a more diverse and incoherent set of atoms, which enhances the performance of DL applications in classification and anomaly detection tasks. Our experiments across several benchmark datasets demonstrate the effectiveness of our method for improving dictionary learning initialization and its subsequent impact on performance in various applications.
ISSN:2076-3417
2076-3417
DOI:10.3390/app142210082