Novel Magnetic Composite Materials for Dental Structure Restoration Application

In general, magnetic nanoparticles are not often used in dental applications due to some limitations of these materials, such as aggregation problems and low mechanical and chemical resistance but also esthetic problems due to their black color. Our research presents the synthesis of novel magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-03, Vol.13 (7), p.1215
Hauptverfasser: Crăciunescu, Izabell, Ispas, George Marian, Ciorîța, Alexandra, Leoștean, Cristian, Illés, Erzsébet, Turcu, Rodica Paula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In general, magnetic nanoparticles are not often used in dental applications due to some limitations of these materials, such as aggregation problems and low mechanical and chemical resistance but also esthetic problems due to their black color. Our research presents the synthesis of novel magnetic dental composite materials based on magnetic nanoparticles, functionalized and properly coated to overcome the limitations of using magnetic nanoparticles in dental applications. The composites were prepared using a preparation flow containing several integrated reaction steps used previously sequentially. An adequate and deep characterization of dental magnetic composites has been carried out in order to demonstrate that each limitation has been successfully overcome. It was proved that each component brings particular benefits in dental interventions: Fe O nanoparticles have biocompatible, non-toxic properties and also antimicrobial effects; the SiO layer significantly increases the mechanical strength of the material; and the Ca(OH) layer initiates local calcification and significantly improves the color of the dental composite material. Due to magnetic properties, an innovative application approach on the tooth surface can be achieved under an external magnetic field, which, compared to conventional methods, has a major impact on reducing the occurrence of dental caries under filling materials as well as on reducing microfractures.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13071215