Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters

Recently, high-performance thin-film lithium niobate optical modulators have emerged that, together with advanced multiplexing technologies, are highly expected to satisfy the ever-growing demand for high-capacity optical interconnects utilizing multiple channels. Accordingly, in this study, a compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light: advanced manufacturing 2023, Vol.4 (2), p.1-10
Hauptverfasser: Liu, Hongxuan, Pan, Bingcheng, Huang, Yishu, He, Jianghao, Zhang, Ming, Yu, Zejie, Liu, Liu, Shi, Yaocheng, Dai, Daoxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, high-performance thin-film lithium niobate optical modulators have emerged that, together with advanced multiplexing technologies, are highly expected to satisfy the ever-growing demand for high-capacity optical interconnects utilizing multiple channels. Accordingly, in this study, a compact lithium-niobate-on-insulator (LNOI) photonic chip was adopted to establish four-channel wavelength-division-multiplexing (WDM) transmitters, comprising four optical modulators based on ultracompact 2 × 2 Fabry-Perot cavities and a four-channel WDM filter based on multimode waveguide gratings. The fabricated chip with four wavelength channels has a total footprint as compact as 0.3 × 2.8 mm2, and exhibits an excess loss of ~0.8 dB as well as low inter-channel crosstalk of < –22 dB. Using this LNOI photonic chip, high-capacity data transmissions of 320 Gbps (4 × 80 Gbps) on-off-keying signals and 400 Gbps (4 × 100 Gbps) four-level pulse amplitude signals were successfully realized with the ultra-low power consumption of 11.9 fJ/bit.
ISSN:2831-4093
2689-9620
DOI:10.37188/lam.2023.013