Individual Tree Segmentation Method Based on Mobile Backpack LiDAR Point Clouds

Individual tree (IT) segmentation is crucial for forest management, supporting forest inventory, biomass monitoring or tree competition analysis. Light detection and ranging (LiDAR) is a prominent technology in this context, outperforming competing technologies. Aerial laser scanning (ALS) is freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (18), p.6007
Hauptverfasser: Comesaña-Cebral, Lino, Martínez-Sánchez, Joaquín, Lorenzo, Henrique, Arias, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Individual tree (IT) segmentation is crucial for forest management, supporting forest inventory, biomass monitoring or tree competition analysis. Light detection and ranging (LiDAR) is a prominent technology in this context, outperforming competing technologies. Aerial laser scanning (ALS) is frequently used for forest documentation, showing good point densities at the tree-top surface. Even though under-canopy data collection is possible with multi-echo ALS, the number of points for regions near the ground in leafy forests drops drastically, and, as a result, terrestrial laser scanners (TLS) may be required to obtain reliable information about tree trunks or under-growth features. In this work, an IT extraction method for terrestrial backpack LiDAR data is presented. The method is based on DBSCAN clustering and cylinder voxelization of the volume, showing a high detection rate (∼90%) for tree locations obtained from point clouds, and low commission and submission errors (accuracy over 93%). The method includes a sensibility assessment to calculate the optimal input parameters and adapt the workflow to real-world data. This approach shows that forest management can benefit from IT segmentation, using a handheld TLS to improve data collection productivity.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21186007