Functional Genomics Reveals Synthetic Lethality between Phosphogluconate Dehydrogenase and Oxidative Phosphorylation

The plasticity of a preexisting regulatory circuit compromises the effectiveness of targeted therapies, and leveraging genetic vulnerabilities in cancer cells may overcome such adaptations. Hereditary leiomyomatosis renal cell carcinoma (HLRCC) is characterized by oxidative phosphorylation (OXPHOS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2019-01, Vol.26 (2), p.469-482.e5
Hauptverfasser: Sun, Yuting, Bandi, Madhavi, Lofton, Timothy, Smith, Melinda, Bristow, Christopher A., Carugo, Alessandro, Rogers, Norma, Leonard, Paul, Chang, Qing, Mullinax, Robert, Han, Jing, Shi, Xi, Seth, Sahil, Meyers, Brooke A., Miller, Meredith, Miao, Lili, Ma, Xiaoyan, Feng, Ningping, Giuliani, Virginia, Geck Do, Mary, Czako, Barbara, Palmer, Wylie S., Mseeh, Faika, Asara, John M., Jiang, Yongying, Morlacchi, Pietro, Zhao, Shuping, Peoples, Michael, Tieu, Trang N., Warmoes, Marc O., Lorenzi, Philip L., Muller, Florian L., DePinho, Ronald A., Draetta, Giulio F., Toniatti, Carlo, Jones, Philip, Heffernan, Timothy P., Marszalek, Joseph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The plasticity of a preexisting regulatory circuit compromises the effectiveness of targeted therapies, and leveraging genetic vulnerabilities in cancer cells may overcome such adaptations. Hereditary leiomyomatosis renal cell carcinoma (HLRCC) is characterized by oxidative phosphorylation (OXPHOS) deficiency caused by fumarate hydratase (FH) nullizyogosity. To identify metabolic genes that are synthetically lethal with OXPHOS deficiency, we conducted a genetic loss-of-function screen and found that phosphogluconate dehydrogenase (PGD) inhibition robustly blocks the proliferation of FH mutant cancer cells both in vitro and in vivo. Mechanistically, PGD inhibition blocks glycolysis, suppresses reductive carboxylation of glutamine, and increases the NADP+/NADPH ratio to disrupt redox homeostasis. Furthermore, in the OXPHOS-proficient context, blocking OXPHOS using the small-molecule inhibitor IACS-010759 enhances sensitivity to PGD inhibition in vitro and in vivo. Together, our study reveals a dependency on PGD in OXPHOS-deficient tumors that might inform therapeutic intervention in specific patient populations. [Display omitted] •PGD is a top hit in a loss-of-function genetics screen in OXPHOS-deficient cancer•OXPHOS-deficient cells depend on PGD in vitro and in vivo•PGD inhibition affects glycolysis, reductive carboxylation, and redox homeostasis•Pharmacological inhibition of OXPHOS renders PGD dependent Loss-of-function genetics screen reveals a synthetically lethal interaction between OXPHOS inhibition and phosphogluconate dehydrogenase (PGD) inactivation. Sun et al. provide an example of targeting tumor metabolism in a genetically predefined context to maximize therapeutic impact and propose PGD as a therapeutic target for fumarate hydratase-deficient HLRCC.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2018.12.043