A Class Balanced Spatio-Temporal Self-Attention Model for Combat Intention Recognition

To address the issue of model performance degradation in combat intention recognition caused by the long-tailed distribution of battlefield data and the neglect of the spatial dimension information of multivariate time series data, this paper proposes a class balanced spatio-temporal self-attention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.112074-112084
Hauptverfasser: Wang, Xuan, Jin, Benzhou, Jia, Mingyang, Wu, Gang, Zhang, Xiaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address the issue of model performance degradation in combat intention recognition caused by the long-tailed distribution of battlefield data and the neglect of the spatial dimension information of multivariate time series data, this paper proposes a class balanced spatio-temporal self-attention (CBSTSA) model. By incorporating spatial and temporal attention mechanisms, the model captures interdependencies among features and extracts salient information from both temporal and spatial dimensions. Furthermore, taking the long-tailed distribution of battlefield data into account, a re-weighted class balanced loss function is introduced to train the model. Experimental results show the superiority of our CBSTSA model, e.g. achieving approximately 95.67% accuracy in typical scenarios, surpassing benchmark schemes by 4-5%.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3442371