Research on Optimization Method of VR Task Scenario Resources Driven by User Cognitive Needs

Research was performed in order to improve the efficiency of a user’s access to information and the interactive experience of task selection in a virtual reality (VR) system, reduce the level of a user’s cognitive load, and improve the efficiency of designers in building a VR system. On the basis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2020-02, Vol.11 (2), p.64
Hauptverfasser: Fu, Qianwen, Lv, Jian, Zhao, Zeyu, Yue, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Research was performed in order to improve the efficiency of a user’s access to information and the interactive experience of task selection in a virtual reality (VR) system, reduce the level of a user’s cognitive load, and improve the efficiency of designers in building a VR system. On the basis of user behavior cognition-system resource mapping, a task scenario resource optimization method for VR system based on quality function deployment-convolution neural network (QFD-CNN) was proposed. Firstly, under the guidance of user behavior cognition, the characteristics of multi-channel information resources in a VR system were analyzed, and the correlation matrix of the VR system scenario resource characteristics was constructed based on the design criteria of human–computer interaction, cognition, and low-load demand. Secondly, analytic hierarchy process (AHP)-QFD combined with evaluation matrix is used to output the priority ranking of VR system resource characteristics. Then, the VR system task scenario cognitive load experiment is carried out on users, and the CNN input set and output set data are collected through the experiment, in order to build a CNN system and predict the user cognitive load and satisfaction in the human–computer interaction in the VR system. Finally, combined with the task information interface of a VR system in a smart city, the application research of the system resource feature optimization method under multi-channel cognition is carried out. The results show that the test coefficient CR value of the AHP-QFD model based on cognitive load is less than 0.1, and the MSE of CNN prediction model network is 0.004247, which proves the effectiveness of this model. According to the requirements of the same design task in a VR system, by comparing the scheme formed by the traditional design process with the scheme optimized by the method in this paper, the results show that the user has a lower cognitive load and better task operation experience when interacting with the latter scheme, so the optimization method studied in this paper can provide a reference for the system construction of virtual reality.
ISSN:2078-2489
2078-2489
DOI:10.3390/info11020064