On the Effect of the Temperature-Humidity Index on Buffalo Bulk Milk Composition and Coagulation Traits
Little is known about the effects of high levels of environmental temperature and humidity on milk yield and quality in buffaloes since this species is known to be more heat tolerant than cattle. However, the distribution of sweat glands and the dark skin color can negatively affect heat tolerance....
Gespeichert in:
Veröffentlicht in: | Frontiers in veterinary science 2020-10, Vol.7, p.577758-577758 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Little is known about the effects of high levels of environmental temperature and humidity on milk yield and quality in buffaloes since this species is known to be more heat tolerant than cattle. However, the distribution of sweat glands and the dark skin color can negatively affect heat tolerance. Moreover, due to increased global temperatures, concerns regarding heat stress and thermoregulation in dairy animals, including buffaloes, have been extended to the northern hemisphere. In this study, the effects of both the temperature-humidity index (THI) and the maximum daily temperature-humidity index (MTHI) were estimated on bulk milk traits, namely fat, protein, lactose, urea content, pH levels, somatic cell score, coagulation properties, and bacteria count. The dataset consisted of repeated data from 99 Mediterranean water buffalo farms, and mixed models were used for the analyses. Supporting the negative correlations observed, bulk milk fat, protein, and lactose content were significantly lower when THI and MTHI were higher. Similarly, milk pH was lower when THI and MTHI were high; however, high levels of THI or MTHI seemed to not be markedly associated with the milk's coagulation ability. According to both analysis of variance and correlations, the somatic cell score was not significantly affected by the THI and MTHI. This is the first study based on a large dataset that evaluates the impact of high temperature and humidity in Italian buffalo milk and that provides correlations with traits of interest for the dairy industry, i.e., milk acidity and coagulation ability. In general, findings show that the effects of elevated THI and heat stress on bulk milk quality in buffalo is less evident than in cattle. These preliminary results intend to open debate on the issue of heat stress in dairy buffaloes that are reared in temperate regions. Further studies should focus on individual milk and performance and should investigate the relationship between high THI and buffalo fertility, behavior, and welfare. |
---|---|
ISSN: | 2297-1769 2297-1769 |
DOI: | 10.3389/fvets.2020.577758 |