Hyperspectral Imaging for the Detection of Bitter Almonds in Sweet Almond Batches

A common fraud in the sweet almond industry is the presence of bitter almonds in commercial batches. The presence of bitter almonds not only causes unpleasant flavours but also problems in the commercialisation and toxicity for consumers. Hyperspectral Imaging (HSI) has been proved to be suitable fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-05, Vol.12 (10), p.4842
Hauptverfasser: Torres-Rodríguez, Irina, Sánchez, María-Teresa, Entrenas, José-Antonio, Vega-Castellote, Miguel, Garrido-Varo, Ana, Pérez-Marín, Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A common fraud in the sweet almond industry is the presence of bitter almonds in commercial batches. The presence of bitter almonds not only causes unpleasant flavours but also problems in the commercialisation and toxicity for consumers. Hyperspectral Imaging (HSI) has been proved to be suitable for the rapid and non-destructive quality evaluation in foods as it integrates the spectral and spatial dimensions. Thus, we aimed to study the feasibility of using an HSI system to identify single bitter almond kernels in commercial sweet almond batches. For this purpose, sweet and bitter almond batches, as well as different mixtures, were analysed in bulk using an HSI system which works in the spectral range 946.6–1648.0 nm. Qualitative models were developed using Partial Least Squares-Discriminant Analysis (PLS-DA) to differentiate between sweet and bitter almonds, obtaining a classification success of over the 99%. Furthermore, data reduction, as a function of the most relevant wavelengths (VIP scores), was applied to evaluate its performance. Then, the pixel-by-pixel validation of the mixtures was carried out, identifying correctly between 61–85% of the adulterations, depending on the group of mixtures and the cultivar analysed. The results confirm that HSI, without VIP scores data reduction, can be considered a promising approach for classifying the bitterness of almonds analysed in bulk, enabling identifying individual bitter almonds inside sweet almond batches. However, a more complex mathematical analysis is necessary before its implementation in the processing lines.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12104842