Research on monaural speech segregation based on feature selection

Speech feature model is the basis of speech and noise separation, speech expression, and different styles of speech conversion. With the development of signal processing methods, the feature types and dimensions increase. Therefore, it is difficult to select appropriate features. If a single feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on audio, speech, and music processing speech, and music processing, 2023-02, Vol.2023 (1), p.10-10, Article 10
Hauptverfasser: Xie, Xiaoping, Chen, Yongzhen, Shen, Rufeng, Tian, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Speech feature model is the basis of speech and noise separation, speech expression, and different styles of speech conversion. With the development of signal processing methods, the feature types and dimensions increase. Therefore, it is difficult to select appropriate features. If a single feature is used, the representation of the speech signal will be incomplete. If multiple features are used, there will be redundancy between features, which will affect the performance of speech separation. The feature described above is a combination of parameters to characterize speech. A single feature means that the combination has only one parameter. In this paper, the feature selection method is used to select and combine eight widely used speech features and parameters. The Deep Neural Network (DNN) is used to evaluate and analyze the speech separation effect of different feature groups. The comparison results show that the speech segregation effect of the complementary feature group is better. The effectiveness of the complementary feature group to improve the performance of DNN speech separation is verified.
ISSN:1687-4722
1687-4714
1687-4722
DOI:10.1186/s13636-023-00276-9