Analysis and Performance Evaluation of Microbial Fuel Cells for Electricity Generation

This research work is focused on the analysis and performance evaluation of microbial fuel cells (MFCs) consisting of multiple one chamber connected in series and parallels for investigation of electricity generation. Using six units (i.e., unit A, unit B, unit C, unit D, unit E, unit F, unit G and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Sciences and Environmental Management 2018-08, Vol.22 (7), p.1025
Hauptverfasser: Oyejide, JO, Orhorhoro, EK, Salisu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research work is focused on the analysis and performance evaluation of microbial fuel cells (MFCs) consisting of multiple one chamber connected in series and parallels for investigation of electricity generation. Using six units (i.e., unit A, unit B, unit C, unit D, unit E, unit F, unit G and unit H) stacked MFCs, the fuel cells were analyzed and evaluated for performance. The results obtained with a single unit microbial fuel cells show that, unit (A) produced an average power of 0.224mW, unit (B) an average power of 0.179mW, unit (C) an average power of 0.138mW, unit (D) an average power of 0.092mW, unit (E) an average power of 0.058mW, unit (F) an average power of 0.036mW, unit (G) an average power of 0.018mW, and unit (H) an average power of 0.005mW. It was observed that decrease in number of microbial fuel cells lead to a corresponding decrease in voltage and current generated, thus drop in power. Conversely, when the unit microbial fuel cells were connected together in series and parallel, improvement in power generation was recorded. An average power of 2.681mW and 2.572mW were obtained from series and parallel connection respectively. Keywords: Microbial fuel cells, anode, cathode, power, renewable energy, electricity generation
ISSN:1119-8362
2659-1502
2659-1499
DOI:10.4314/jasem.v22i7.5