Stability, Electronic Structure and Thermodynamic Properties of Nanostructured MgH2 Thin Films
Magnesium is an attractive hydrogen storage candidate due to its high gravimetric and volumetric storage capacities (7.6 wt.% and 110 gH2/l, respectively). Unfortunately, its use as a storage material for hydrogen is hampered by the high stability of its hydride, its high dissociation temperature of...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-11, Vol.14 (22), p.7737 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnesium is an attractive hydrogen storage candidate due to its high gravimetric and volumetric storage capacities (7.6 wt.% and 110 gH2/l, respectively). Unfortunately, its use as a storage material for hydrogen is hampered by the high stability of its hydride, its high dissociation temperature of 573–673 K and its slow reaction kinetics. In order to overcome those drawbacks, an important advancement toward controlling the enthalpy and desorption temperatures of nano-structured MgH2 thin films via stress/strain and size effects is presented in this paper, as the effect of the nano-structuring of the bulk added to a biaxial strain on the hydrogen storage properties has not been previously investigated. Our results show that the formation heat and decomposition temperature correlate with the thin film’s thickness and strain/stress effects. The instability created by decreasing the thickness of MgH2 thin films combined with the stress/strain effects induce a significant enhancement in the hydrogen storage properties of MgH2. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14227737 |