Safe and Stable Lithium Metal Batteries Enabled by an Amide-Based Electrolyte
Highlights A novel amide-based nonflammable electrolyte is proposed. The formation mechanism and solvation chemistry are investigated by molecular dynamics simulations and density functional theory. An inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li 3 N and Li–N–C is...
Gespeichert in:
Veröffentlicht in: | Nano-Micro Letters 2022-12, Vol.14 (1), p.44-44, Article 44 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights
A novel amide-based nonflammable electrolyte is proposed. The formation mechanism and solvation chemistry are investigated by molecular dynamics simulations and density functional theory.
An inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li
3
N and Li–N–C is in situ formed, leading to spherical lithium deposition.
The amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃.
The formation of lithium dendrites and the safety hazards arising from flammable liquid electrolytes have seriously hindered the development of high-energy-density lithium metal batteries. Herein, an emerging amide-based electrolyte is proposed, containing LiTFSI and butyrolactam in different molar ratios. 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether and fluoroethylene carbonate are introduced into the amide-based electrolyte as counter solvent and additives. The well-designed amide-based electrolyte possesses nonflammability, high ionic conductivity, high thermal stability and electrochemical stability (> 4.7 V). Besides, an inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li
3
N and Li–N–C is in situ formed, leading to spherical lithium deposition. The formation mechanism and solvation chemistry of amide-based electrolyte are further investigated by molecular dynamics simulations and density functional theory. When applied in Li metal batteries with LiFePO
4
and LiMn
2
O
4
cathode, the amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃. This study provides a new insight into the development of amide-based electrolytes for lithium metal batteries. |
---|---|
ISSN: | 2311-6706 2150-5551 |
DOI: | 10.1007/s40820-021-00780-7 |