Multilayer stabilization for fabricating high-loading single-atom catalysts
Metal single-atom catalysts (M-SACs) have emerged as an attractive concept for promoting heterogeneous reactions, but the synthesis of high-loading M-SACs remains a challenge. Here, we report a multilayer stabilization strategy for constructing M-SACs in nitrogen-, sulfur- and fluorine-co-doped grap...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-11, Vol.11 (1), p.5892-5892, Article 5892 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal single-atom catalysts (M-SACs) have emerged as an attractive concept for promoting heterogeneous reactions, but the synthesis of high-loading M-SACs remains a challenge. Here, we report a multilayer stabilization strategy for constructing M-SACs in nitrogen-, sulfur- and fluorine-co-doped graphitized carbons (M = Fe, Co, Ru, Ir and Pt). Metal precursors are embedded into perfluorotetradecanoic acid multilayers and are further coated with polypyrrole prior to pyrolysis. Aggregation of the metals is thus efficiently inhibited to achieve M-SACs with a high metal loading (~16 wt%). Fe-SAC serves as an efficient oxygen reduction catalyst with half-wave potentials of 0.91 and 0.82 V (versus reversible hydrogen electrode) in alkaline and acid solutions, respectively. Moreover, as an air electrode in zinc–air batteries, Fe-SAC demonstrates a large peak power density of 247.7 mW cm
−2
and superior long-term stability
.
Our versatile method paves an effective way to develop high-loading M-SACs for various applications.
Metal single-atom catalysts offer great potential in bridging the gap between heterogeneous and homogeneous catalysis. Here the authors demonstrate a multilayer stabilization strategy for fabricating high-loading single-atom catalysts including non-precious and noble metals. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-19599-8 |