Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations

In this article, we propose a new method that determines an efficient numerical procedure for solving second-order fuzzy Volterra integro-differential equations in a Hilbert space. This method illustrates the ability of the reproducing kernel concept of the Hilbert space to approximate the solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2018-12, Vol.2018 (1), p.1-15, Article 475
Hauptverfasser: Gumah, Ghaleb N., Naser, Mohammad F. M., Al-Smadi, Mohammed, Al-Omari, Shrideh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we propose a new method that determines an efficient numerical procedure for solving second-order fuzzy Volterra integro-differential equations in a Hilbert space. This method illustrates the ability of the reproducing kernel concept of the Hilbert space to approximate the solutions of second-order fuzzy Volterra integro-differential equations. Additionally, we discuss and derive the exact and approximate solutions in the form of Fourier series with effortlessly computable terms in the reproducing kernel Hilbert space W 2 3 [ a , b ] ⊕ W 2 . 3 [ a , b ] . The convergence of the method is proven and its exactness is illustrated by three numerical examples.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-018-1937-8