Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations
In this article, we propose a new method that determines an efficient numerical procedure for solving second-order fuzzy Volterra integro-differential equations in a Hilbert space. This method illustrates the ability of the reproducing kernel concept of the Hilbert space to approximate the solutions...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2018-12, Vol.2018 (1), p.1-15, Article 475 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we propose a new method that determines an efficient numerical procedure for solving second-order fuzzy Volterra integro-differential equations in a Hilbert space. This method illustrates the ability of the reproducing kernel concept of the Hilbert space to approximate the solutions of second-order fuzzy Volterra integro-differential equations. Additionally, we discuss and derive the exact and approximate solutions in the form of Fourier series with effortlessly computable terms in the reproducing kernel Hilbert space
W
2
3
[
a
,
b
]
⊕
W
2
.
3
[
a
,
b
]
. The convergence of the method is proven and its exactness is illustrated by three numerical examples. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-018-1937-8 |