A Stellar Imaging Error Correction Method Based on an Ellipsoid Model: Taking Ziyuan 3-02 Satellite Data Analysis as an Example

Stellar point image coordinates are one of the important observations needed for high-precision space attitude measurement with a star sensor. High-coupling imaging errors occur under dynamic imaging conditions. Using the results of preliminary star point extraction from star sensor imaging data com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-12, Vol.18 (12), p.4259
Hauptverfasser: Wang, Bo, Zhou, Wei, Gao, Yuyang, Sheng, Qinghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stellar point image coordinates are one of the important observations needed for high-precision space attitude measurement with a star sensor. High-coupling imaging errors occur under dynamic imaging conditions. Using the results of preliminary star point extraction from star sensor imaging data combined with a superimposed time series, we analyze the relative motion and trajectory based on the star point image, establish an image error ellipsoid fitting model based on the elliptical orbit of a satellite platform, and achieve geometric error correction of a star sensors' image star point using multi-parameter screening of the ambiguous solutions of intersection of the elliptic equations. The simulation data showed that the accuracy of the correction error of this method reached 89.8%, and every star point coordinate required 0.259 s to calculate, on average. In addition, it was applied to real data from the satellite Ziyuan 3-02 to carry out the correction of the star points. The experiment shows that the mean of attitude quaternion errors for all its components was reduced by 52.3%. Our results show that the estimation parameters of dynamic imaging errors can effectively compensate for the star point image observation value and improve the accuracy of attitude calculation.
ISSN:1424-8220
1424-8220
DOI:10.3390/s18124259