Surface Groups and Dielectric Properties of Ti3C2Tx MXene Nanosheets after NH3·H2O Solvothermal Treatment under Different Temperatures

The rapid development of electronic technology has brought convenience and efficiency to the lives of modern people, while emphasizing the need for novel materials with designability and excellent dielectric properties at the same time. In this work, Ti3C2Tx MXene nanosheets (MNSs) underwent NH3·H2O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2023-07, Vol.13 (7), p.1005
Hauptverfasser: Liu, Zhiwei, Li, Guanlong, Zhao, Yan, Chen, Xiangbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid development of electronic technology has brought convenience and efficiency to the lives of modern people, while emphasizing the need for novel materials with designability and excellent dielectric properties at the same time. In this work, Ti3C2Tx MXene nanosheets (MNSs) underwent NH3·H2O solvothermal treatment at temperatures of 40 °C, 60 °C, 80 °C, 100 °C, 120 °C, 140 °C, 160 °C, and 180 °C. The changes in the surface groups and dielectric properties after the solvothermal treatment were studied. The solvothermal treatment increased the proportion of surface -OH groups, which was beneficial to the permittivity of the MNSs. However, as the treating temperature increased, the amount of -OH on the surface of the MNSs showed a reducing trend, according to XPS spectra. As the treating temperature rose from 40 °C to 80 °C, the real part of the permittivity of MNS sample showed a significant decrease, eventually remaining approximately stable in the 80 °C to 180 °C samples. The results of electromagnetic characterization were in line with the group proportion, as determined via the XPS O1s spectra, supporting the previous conclusion that the -OH group played an important role in the permittivity.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst13071005