BESSEL POLYNOMIALS AND SOME CONNECTION FORMULAS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS

In this paper, we introduce the concept of the \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials, where \(\mathbb{B}_{\alpha}\) is the raising operator \(\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\), with nonzero complex number \(\alpha\) and \(\mathbb{I}\) rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ural mathematical journal 2022-12, Vol.8 (2), p.4
Hauptverfasser: Aloui, Baghdadi, Souissi, Jihad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce the concept of the \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials, where \(\mathbb{B}_{\alpha}\) is the raising operator \(\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\), with nonzero complex number \(\alpha\) and \(\mathbb{I}\) representing the identity operator. We show that the Bessel polynomials \(B^{(\alpha)}_n(x),\ n\geq0\), where \(\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}\), are the only \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.
ISSN:2414-3952
2414-3952
DOI:10.15826/umj.2022.2.001