Effect of Illite Treatment on Quality Characteristics and Antioxidant Activity of Broccoli ( Brassica oleracea L. var. italica ) Sprouts
Microgreens have recently gained popularity owing to their reliable economic and nutritional value. This study aimed to increase the quality of microgreen broccoli via treatment with different concentrations (1%, IPB-1; 3%, IPB-3; 5%, IPB-5; or 7%, IPB-7 / ) of illite-a natural mineral powder. The r...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-09, Vol.29 (18), p.4347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microgreens have recently gained popularity owing to their reliable economic and nutritional value. This study aimed to increase the quality of microgreen broccoli via treatment with different concentrations (1%, IPB-1; 3%, IPB-3; 5%, IPB-5; or 7%, IPB-7
/
) of illite-a natural mineral powder. The results showed that the illite treatments considerably increased the content of mineral elements, such as Ca, P, and K; of vitamin C; and of free amino acids; and also increased the total weight of the broccoli sprouts. The content of sulforaphane, a bioactive compound, also increased by up to 47% with illite treatment, with the highest increase being in the IPB-5 group. However, several of the parameters were lower in the IPB-7 group. Aromatic compounds were categorized by functional groups such as hydrocarbons which numbered 36, 30, 34, 28, and 30 in the control, IPB-1, IPB-3, IPB-5, and IPB-7 groups, respectively. We found 16, 15, 15, 13, and 14 sulfides, including dimethyl sulfide, in the control, IPB-1, IPB-3, IPB-5, and IPB-7 groups, respectively. Additionally, aldehydes, comprising seven compounds, were detected in the IPB-1, IPB-3, IPB-5, and IPB-7 groups. Illite treatment significantly increased the activities of antioxidants such as DPPH and the polyphenol content of the microgreens. These results indicate a potential role for appropriate illite doses in microgreen treatment to address multinutrient deficiencies and to increase the quality of microgreen vegetables. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29184347 |