Sampling and Mapping Chemical Space with Extended Similarity Indices
Visualization of the chemical space is useful in many aspects of chemistry, including compound library design, diversity analysis, and exploring structure-property relationships, to name a few. Examples of notable research areas where the visualization of chemical space has strong applications are d...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-08, Vol.28 (17), p.6333 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Visualization of the chemical space is useful in many aspects of chemistry, including compound library design, diversity analysis, and exploring structure-property relationships, to name a few. Examples of notable research areas where the visualization of chemical space has strong applications are drug discovery and natural product research. However, the sheer volume of even comparatively small sub-sections of chemical space implies that we need to use approximations at the time of navigating through chemical space. ChemMaps is a visualization methodology that approximates the distribution of compounds in large datasets based on the selection of satellite compounds that yield a similar mapping of the whole dataset when principal component analysis on a similarity matrix is performed. Here, we show how the recently proposed extended similarity indices can help find regions that are relevant to sample satellites and reduce the amount of high-dimensional data needed to describe a library's chemical space. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28176333 |