Self-Supervised Learning to Detect Key Frames in Videos

Detecting key frames in videos is a common problem in many applications such as video classification, action recognition and video summarization. These tasks can be performed more efficiently using only a handful of key frames rather than the full video. Existing key frame detection approaches are m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-12, Vol.20 (23), p.6941
Hauptverfasser: Yan, Xiang, Gilani, Syed Zulqarnain, Feng, Mingtao, Zhang, Liang, Qin, Hanlin, Mian, Ajmal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting key frames in videos is a common problem in many applications such as video classification, action recognition and video summarization. These tasks can be performed more efficiently using only a handful of key frames rather than the full video. Existing key frame detection approaches are mostly designed for supervised learning and require manual labelling of key frames in a large corpus of training data to train the models. Labelling requires human annotators from different backgrounds to annotate key frames in videos which is not only expensive and time consuming but also prone to subjective errors and inconsistencies between the labelers. To overcome these problems, we propose an automatic self-supervised method for detecting key frames in a video. Our method comprises a two-stream ConvNet and a novel automatic annotation architecture able to reliably annotate key frames in a video for self-supervised learning of the ConvNet. The proposed ConvNet learns deep appearance and motion features to detect frames that are unique. The trained network is then able to detect key frames in test videos. Extensive experiments on UCF101 human action and video summarization VSUMM datasets demonstrates the effectiveness of our proposed method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20236941