Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate

Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-08, Vol.9 (1), p.3085-13, Article 3085
Hauptverfasser: Chen, Shin-Fu, Huang, Nan-Lan, Lin, Jung-Hsin, Wu, Chyuan-Chuan, Wang, Ying-Ren, Yu, Yu-Jen, Gilson, Michael K., Chan, Nei-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central importance of this gate-opening event to Top2 function, the DNA-gate in all reported structures of Top2-DNA complexes is in the closed state. Here we present the crystal structure of a human Top2 DNA-gate in an open conformation, which not only reveals structural characteristics of its DNA-conducting path, but also uncovers unexpected yet functionally significant conformational changes associated with gate-opening. This structure further implicates Top2’s preference for a left-handed DNA braid and allows the construction of a model representing the initial entry of another DNA duplex into the DNA-gate. Steered molecular dynamics calculations suggests the Top2-catalyzed DNA passage may be achieved by a rocker-switch-type movement of the DNA-gate. Type II DNA topoisomerases (Top2s) direct the passage of one DNA duplex through another, which is important for resolving DNA entanglements. Here the authors combine X-ray crystallography and MD simulations and present the structure of the human Top2 DNA-gate in an open conformation and discuss mechanistic implications.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05406-y