Statistical Evaluation of the Performance of Gridded Daily Precipitation Products from Reanalysis Data, Satellite Estimates, and Merged Analyses over Global Land

The Beijing Climate Center of the China Meteorological Administration (BCC/CMA) has developed a gauge-satellite-model merged gridded daily precipitation dataset with complete global coverage, called BCC Merged Estimation of Precipitation (BMEP). Using the unified rain gauge dataset from the CPC (CPC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-09, Vol.15 (18), p.4602
Hauptverfasser: Cao, Weihua, Nie, Suping, Ma, Lijuan, Zhao, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Beijing Climate Center of the China Meteorological Administration (BCC/CMA) has developed a gauge-satellite-model merged gridded daily precipitation dataset with complete global coverage, called BCC Merged Estimation of Precipitation (BMEP). Using the unified rain gauge dataset from the CPC (CPC-U) as the independent benchmark, BMEP and the four most widely used global daily precipitation products, including the Global Precipitation Climatology Project one-degree daily (GPCP-1DD), the NCEP Climate Forecast System Reanalysis (CFSR), the Interim ECMWF Re-analysis (ERA-interim), and the 55 year Japanese Reanalysis Project (JRA-55), are evaluated over the global land area from January 2003 to December 2016. The results show that all gridded datasets capture the overall spatiotemporal variation of global daily precipitation. All gridded datasets can basically capture the overall spatiotemporal variation of global daily precipitation. However, CFSR data tend to overestimate precipitation intensity and exhibit a spurious positive trend after 2010, attributed to the transition from CFSR to NCEP’s Climate Forecast System Version 2 (CFSv2). On the other hand, JRA-55 and ERA-interim data demonstrate higher skill in characterizing spatial and temporal variations, bias, correlation, and RMSE. GPCP-1DD data perform well in terms of bias but show limitations in detecting the interannual variability and RMSE of daily precipitation. Among these evaluated products, BMEP data exhibit the best agreement with CPC-U data in terms of the spatiotemporal variation, pattern, magnitude of variability, and occurrence of rainfall events across different thresholds. These findings indicate that BMEP gridded precipitation data effectively capture the actual characteristics of daily precipitation over global land areas.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15184602