Can Stomach Content and Microbiomes of Tuna Provide Near Real-Time Detection of Ecosystem Composition in the Pacific Ocean?
This preliminary study used DNA metabarcoding to test whether the stomach content and gut microbiome of tuna could be a viable near real-time monitoring tool for detecting composition and change in oceanic ecosystems. The gut content of skipjack ( Katsuwonus pelamis , n=55) and yellowfin tuna ( Thun...
Gespeichert in:
Veröffentlicht in: | Frontiers in Marine Science 2022-05, Vol.9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This preliminary study used DNA metabarcoding to test whether the stomach content and gut microbiome of tuna could be a viable near real-time monitoring tool for detecting composition and change in oceanic ecosystems. The gut content of skipjack (
Katsuwonus pelamis
, n=55) and yellowfin tuna (
Thunnus albacares
, n=46) captured in the Pacific Ocean during El Niño Southern Oscillation events (ENSO) between 2015-2017 were examined by high throughput sequencing and complemented by morphological assessments to identify fishes, crustaceans and cephalopods in the stomach content. Gut microbiome was examined solely by high throughput sequencing. Stomach content and gut microbiome were compared between tuna species, ENSO events and capture location using generalised linear models. The full model (tuna species, capture location and interaction with ENSO) best explained fish prey composition, while capture location and ENSO weakly explained the composition of crustaceans and cephalopods. Skipjack and yellowfin tuna captured near coastal areas (Longitude |
---|---|
ISSN: | 2296-7745 2296-7745 |
DOI: | 10.3389/fmars.2022.811532 |