MODIT: MOtif DIscovery in Temporal Networks

Temporal networks are graphs where each edge is linked with a timestamp, denoting when an interaction between two nodes happens. According to the most recently proposed definitions of the problem, motif search in temporal networks consists in finding and counting all connected temporal graphs (calle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in big data 2022-02, Vol.4, p.806014-806014
Hauptverfasser: Grasso, Roberto, Micale, Giovanni, Ferro, Alfredo, Pulvirenti, Alfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temporal networks are graphs where each edge is linked with a timestamp, denoting when an interaction between two nodes happens. According to the most recently proposed definitions of the problem, motif search in temporal networks consists in finding and counting all connected temporal graphs (called motifs) occurring in a larger temporal network , such that matched target edges follow the same chronological order imposed by edges in . In the last few years, several algorithms have been proposed to solve motif search, but most of them are limited to very small or specific motifs due to the computational complexity of the problem. In this paper, we present MODIT (MOtif DIscovery in Temporal Networks), an algorithm for counting motifs of any size in temporal networks, inspired by a very recent algorithm for subgraph isomorphism in temporal networks, called TemporalRI. Experiments show that for big motifs (more than 3 nodes and 3 edges) MODIT can efficiently retrieve them in reasonable time (up to few hours) in many networks of medium and large size and outperforms state-of-the art algorithms.
ISSN:2624-909X
2624-909X
DOI:10.3389/fdata.2021.806014