In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes
High nickel content in LiNi x Co y Mn z O 2 (NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-09, Vol.12 (1), p.1-13, Article 5320 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High nickel content in LiNi
x
Co
y
Mn
z
O
2
(NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling. Although the use of single-crystal Ni-rich NCM can mitigate these drawbacks, the ion-diffusion in large single-crystal particles hamper its rate capability. Herein, we report a strategy to construct an in situ Li
1.4
Y
0.4
Ti
1.6
(PO
4
)
3
(LYTP) ion/electron conductive network which interconnects single-crystal LiNi
0.88
Co
0.09
Mn
0.03
O
2
(SC-NCM88) particles. The LYTP network facilitates the lithium-ion transport between SC-NCM88 particles, mitigates mechanical instability and prevents detrimental crystalline phase transformation. When used in combination with a Li metal anode, the LYTP-containing SC-NCM88-based cathode enables a coin cell capacity of 130 mAh g
−1
after 500 cycles at 5 C rate in the 2.75-4.4 V range at 25 °C. Tests in Li-ion pouch cell configuration (i.e., graphite used as negative electrode active material) demonstrate capacity retention of 85% after 1000 cycles at 0.5 C in the 2.75-4.4 V range at 25 °C for the LYTP-containing SC-NCM88-based positive electrode.
Single-crystal Ni-rich cathodes suffer from side reactions with the electrolyte and slow Li-ion transport during high-voltage cycling. Herein, a Li
1.4
Y
0.4
Ti
1.6
(PO
4
)
3
coating is applied to facilitate the Li-ion transport and improve the cycling life of the cell. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-25611-6 |