Synthesis, molecular docking simulation, and antimicrobial activities of novel bis-heterocycles linked to piperazine and vanillin units as novel hybrid molecules via Hantzsch, Biginelli, and Michael’s reactions

[Display omitted] Bacterial infections are a global issue, causing sickness and death, mainly in developing nations. Resistance to current medicines is a significant issue in healthcare. Overcoming the resistance problem will necessitate the development of molecules with novel modes of action that d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in Chemistry 2024-08, Vol.10, p.101684, Article 101684
Hauptverfasser: Fares, Ibrahim M.Z., Mahmoud, Nesma E., Abdelhamid, Ismail A., Elwahy, Ahmed H.M., sultan Alqahtani, Arwa, Ibrahim, Nada S., Salem, Mostafa E., Diab, Hadeer M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Bacterial infections are a global issue, causing sickness and death, mainly in developing nations. Resistance to current medicines is a significant issue in healthcare. Overcoming the resistance problem will necessitate the development of molecules with novel modes of action that do not cross-react with existing medicines. Synthesis of new bis-heterocycles linked to the piperazine core and vanillin unit is disclosed in this regard. The target compounds were produced via the reaction of 4,4′-((piperazine-1,4-diylbis(2-oxoethane-2,1-diyl))bis(oxy))bis(3-methoxybenzaldehyde) with various reagents using the Hantzsch, Biginelli, and Michael’s reactions. All the generated compounds were tested for their antibacterial activity against a variety of bacterial strains. The antibacterial activity evaluations revealed that compound 32 has the most promising activity against Pseudomonas aeruginosa (19.5 ± 0.7 mm) compared to Ofloxacin (17 mm) with minimum inhibitory concentration (MIC) equaled to 625 µg/mL. A molecular docking investigation revealed that compound 32 had the greatest binding affinity for bacterial enoyl reductase (−36.13 ± 0.2 Kcal/mole) when compared to the co-crystallized ligand (−16.8 ± 0 Kcal/mole).
ISSN:2211-7156
2211-7156
DOI:10.1016/j.rechem.2024.101684