Performance of LLBC-based rotor blade for low speed wind turbine

The development of wind turbine attracts more attention as a renewable energy that supports green technology. Layer Laminated Bamboo Composite (LLBC) is a bio-composite with bamboo base material which is abundant material and has a relatively lower price. Therefore, LLBC is a prospective material fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Setiawan, A., Al Gifari, M. M., Hamidah, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of wind turbine attracts more attention as a renewable energy that supports green technology. Layer Laminated Bamboo Composite (LLBC) is a bio-composite with bamboo base material which is abundant material and has a relatively lower price. Therefore, LLBC is a prospective material for rotor blades of low speed wind turbine. This study investigates the performance of the LLBC-based rotor blades that have been successfully made previously. This research uses experimental method. Performance of the LLBC-based rotor blades is tested by wind tunnel experiment and then compared with the fiber-based rotor blade available in market. The results showed that the LLBC-based rotor blades require wind speed of 4.6 m/s to start rotation, while for the fiber-based rotor blades requires wind speed of 4.7 m/s. Electrical power generated by the LLBC-blade is still lower than generated by standard blade (fiberglass). At wind speed of 8 m/s, a vibration occurs that reduce performance of the blades. We conclude that LLBC is a potential material for rotor blades of low-speed wind turbine.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201819708004