Swarm intelligence-based packet scheduling for future intelligent networks

Network operations involve several decision-making tasks. Some of these tasks are related to operators, such as extending the footprint or upgrading the network capacity. Other decision tasks are related to network functions, such as traffic classifications, scheduling, capacity, coverage trade-offs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science 2023-11, Vol.9, p.e1671-e1671, Article e1671
Hauptverfasser: Husen, Arif, Hasanain Chaudary, Muhammad, Ahmad, Farooq, Farooq-I-Azam, Muhammad, Hwang See, Chan, Ghani, Arfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network operations involve several decision-making tasks. Some of these tasks are related to operators, such as extending the footprint or upgrading the network capacity. Other decision tasks are related to network functions, such as traffic classifications, scheduling, capacity, coverage trade-offs, and policy enforcement. These decisions are often decentralized, and each network node makes its own decisions based on the preconfigured rules or policies. To ensure effectiveness, it is essential that planning and functional decisions are in harmony. However, human intervention-based decisions are subject to high costs, delays, and mistakes. On the other hand, machine learning has been used in different fields of life to automate decision processes intelligently. Similarly, future intelligent networks are also expected to see an intense use of machine learning and artificial intelligence techniques for functional and operational automation. This article investigates the current state-of-the-art methods for packet scheduling and related decision processes. Furthermore, it proposes a machine learning-based approach for packet scheduling for agile and cost-effective networks to address various issues and challenges. The analysis of the experimental results shows that the proposed deep learning-based approach can successfully address the challenges without compromising the network performance. For example, it has been seen that with mean absolute error from 6.38 to 8.41 using the proposed deep learning model, the packet scheduling can maintain 99.95% throughput, 99.97% delay, and 99.94% jitter, which are much better as compared to the statically configured traffic profiles.
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.1671