Spectral characterisation of hydrothermal alteration associated with sediment-hosted Cu–Ag mineralisation in the central European Kupferschiefer

The analysis of hydrothermal alteration in exploration drill cores allows for fluid-rock interaction processes to be traced, for fluid flow paths to be identified, and thus for vectors in mineral systems to be determined. Hyperspectral imaging techniques are increasingly being employed to fill the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid earth (Göttingen) 2023-04, Vol.14 (4), p.463-484
Hauptverfasser: Géring, Léa, Kirsch, Moritz, Thiele, Samuel, De Lima Ribeiro, Andréa, Gloaguen, Richard, Gutzmer, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The analysis of hydrothermal alteration in exploration drill cores allows for fluid-rock interaction processes to be traced, for fluid flow paths to be identified, and thus for vectors in mineral systems to be determined. Hyperspectral imaging techniques are increasingly being employed to fill the scale gap between lab-based petrographic or geochemical analyses and the typical size of exploration targets. Hyperspectral imaging permits the rapid, cost-efficient, and continuous characterisation of alteration mineralogy and texture along entire drill cores, with a spatial sampling of a few millimetres. In this contribution, we present the results of an exploratory study on three mineralised drill cores from the Spremberg-Graustein Kupferschiefer-type Cu-Ag deposit in the Lusatia region of Germany. We demonstrate that hyperspectral imaging is well-suited to recognising and tracking the effects of hydrothermal alteration associated with strata-bound hydrothermal mineralisation. Micro X-ray fluorescence spectrometry was used to corroborate the alteration mineral assemblages identified in hyperspectral data acquired in the visible, near- (400 to 970 nm), shortwave (970 to 2500 nm), mid-wave (2700 to 5300 nm), and longwave infrared (7700 to 12 300 nm). We identified two main shortcomings of the technique, namely the overlapping of some mineral features (e.g. carbonate and illite absorption in the shortwave infrared) and the darkness of the organic-matter-rich dolostones and shales that results in low reflectance.
ISSN:1869-9529
1869-9510
1869-9529
DOI:10.5194/se-14-463-2023