Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications

Oxygen isotope (δ18O) sclerochronology of benthic marine molluscs provides a means of reconstructing the seasonal range in seafloor temperature, subject to use of an appropriate equation relating shell δ18O to temperature and water δ18O, a reasonably accurate estimation of water δ18O, and due consid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate of the past 2022-05, Vol.18 (5), p.1203-1229
Hauptverfasser: Johnson, Andrew L. A, Valentine, Annemarie M, Schöne, Bernd R, Leng, Melanie J, Goolaerts, Stijn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxygen isotope (δ18O) sclerochronology of benthic marine molluscs provides a means of reconstructing the seasonal range in seafloor temperature, subject to use of an appropriate equation relating shell δ18O to temperature and water δ18O, a reasonably accurate estimation of water δ18O, and due consideration of growth-rate effects. Taking these factors into account, δ18O data from late Pliocene bivalves of the southern North Sea basin (Belgium and the Netherlands) indicate a seasonal seafloor range a little smaller than now in the area. Microgrowth-increment data from Aequipecten opercularis, together with the species composition of the bivalve assemblage and aspects of preservation, suggest a setting below the summer thermocline for all but the latest material investigated. This implies a higher summer temperature at the surface than on the seafloor and consequently a greater seasonal range. A reasonable (3 ∘C) estimate of the difference between maximum seafloor and surface temperature under circumstances of summer stratification points to seasonal surface ranges in excess of the present value (12.4 ∘C nearby). Using a model-derived estimate of water δ18O (0.0 ‰), summer surface temperature was initially in the cool temperate range (20 ∘C) before reverting to cool temperate values (in conjunction with shallowing and a loss of summer stratification). This pattern is in agreement with biotic-assemblage evidence. Winter temperature was firmly in the cool temperate range (
ISSN:1814-9332
1814-9324
1814-9332
DOI:10.5194/cp-18-1203-2022